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Abstract

For evaluating diagnostic accuracy of inherently continuous diagnostic tests/

biomarkers, sensitivity and specificity are well-known measures both of which

depend on a diagnostic cut-off, which is usually estimated. Sensitivity (specific-

ity) is the conditional probability of testing positive (negative) given the true

disease status. However, a more relevant question is “what is the probability of
having (not having) a disease if a test is positive (negative)?”. Such post-test

probabilities are denoted as positive predictive value (PPV) and negative pre-

dictive value (NPV). The PPV and NPV at the same estimated cut-off are corre-

lated, hence it is desirable to make the joint inference on PPV and NPV to

account for such correlation. Existing inference methods for PPV and NPV

focus on the individual confidence intervals and they were developed under

binomial distribution assuming binary instead of continuous test results. Sev-

eral approaches are proposed to estimate the joint confidence region as well as

the individual confidence intervals of PPV and NPV. Simulation results indi-

cate the proposed approaches perform well with satisfactory coverage probabil-

ities for normal and non-normal data and, additionally, outperform existing

methods with improved coverage as well as narrower confidence intervals for

PPV and NPV. The Alzheimer's Disease Neuroimaging Initiative (ADNI) data

set is used to illustrate the proposed approaches and compare them with the

existing methods.
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1 | INTRODUCTION

In medical diagnostics, sensitivity and specificity are two frequently used measures for evaluating diagnostic perfor-
mance by both researchers and practitioners. The sensitivity is the probability of a diseased subject being diagnosed as
diseased while the specificity is the probability of a healthy subject being diagnosed as non-diseased. Therefore, sensitiv-
ity and specificity are the conditional probabilities of testing results given the true disease status. However, in practice,
without performing the gold standard test (which often is more costly and/or involves more risky procedures), clini-
cians and patients do not know the true disease status. Therefore, a more relevant question for clinicians and patients is
“what is the probability of having (not having) a disease under a positive (negative) test result?”.1 Such posterior proba-
bilities are denoted as positive predictive value (PPV) and negative predictive value (NPV). Based on Bayes theorem, we
can derive the equations of the posterior probabilities, PPV and NPV, as functions of sensitivity, specificity and preva-
lence rate of the disease. Unlike sensitivity and specificity, which is an invariant measure for diagnostic tests, PPV and
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NPV depend on the prevalence of the disease and change with respect to different disease prevalence rates from differ-
ent target populations.

Not much research has focused on the statistical methods for the inference based on PPV and/or NPV, and cur-
rently existing methods were developed under a binary-scale diagnostic test. For example, four confidence intervals
(standard, standard adjusted, logit, logit-adjusted) were proposed based on binomial distribution properties for predic-
tive values.2 Additionally, Bayesian alternative methods3 were proposed. However, for a diagnostic test with naturally
continuous measurements, the value of the diagnostic cut-off c is needed to dichotomize the continuous measurements
into binary (positive or negative) test results. If we apply the existing binomial confidence intervals, the test results must
be binary or the cut-off for the continuous test is known and assumed to be fixed. For situations where the cut-off is
unknown and needs to be estimated, the Youden index4 is a widely used optimization criteria to find c in practice.5–7

The corresponding optimal cut-off point gives the maximum of the sum of sensitivity and specificity. After the cut-off
point based on Youden index is estimated, sensitivity and specificity can be calculated. Then, for any given disease prev-
alence, the values of PPV and NPV can be estimated.

Since the optimal cut-off point is estimated and PPV and NPV are both functions of the estimated sensitivity and
specificity at the same cut-off point, PPV and NPV estimates are potentially correlated. If we want to make inferences
about both PPV and NPV, in order to account for such potential correlation between them, we may consider a joint
confidence region. The joint confidence region of the potentially correlated PPV and NPV can give more comprehensive
information compared with the individual confidence intervals that are more commonly used in practice. Section 2 in
the following text provides more details about its benefits in application. Past literature exists for about joint inference
methods in ROC analysis. For example, there is a publication about the joint confidence region of the AUC and Youden
index,8 the joint confidence region of the sensitivity and specificity,9 the joint confidence region based on empirical
likelihood method for any pair of (sensitivity, specificity, cut-off point) given the third value is fixed,10 and the joint
confidence region of the sensitivity and specificity at the estimated optimal cut-off point considering the variability of
Box-Cox transformation parameter.11 Previous joint inference research were about the pre-test diagnostic accuracy
measures, which values are obtained conditioning on the true disease status of each observation. In this research, the
accuracy measures of interest are the predictive values, which are post-test measures that give user some idea about the
diagnostic accuracy conditioning on the test results.

The rest of the paper is organized as follows. Section 2 gives the motivation of the research and discusses the advan-
tage of the proposed methods over the two existing methods which were developed under binary-scale test settings.2,3

Section 3 presents the proposed methods and has five subsections. Notations and preliminaries about the binormal
model in an Receiver operating characteristic (ROC) setting are introduced in Section 3.1. In Sections 3.2 and 3.3, confi-
dence regions of PPV and NPV based on generalized inference and parametric bootstrap under normality are discussed,
respectively. In Section 3.4, the application of Box-Cox transformation for the estimation of joint confidence region
under non-normal data is presented. Finally, monotonic transformation and inverse transformation of the proposed
confidence region are presented in Section 3.5. Section 4 contains simulation results comparing the proposed methods
as well as for the two existing methods of constructing the individual confidence intervals.2,3 In Section 5, a real-world
data example from the Alzheimer's Disease Neuroimaging Initiative (ADNI) is analyzed to illustrate the proposed confi-
dence regions. Section 6 provides conclusions and extends the proposed setting for applying different weights or incor-
porating the variability of sensitivity and specificity due to other considerations. Furthermore, possible applications of
the proposed methods beyond medical diagnostics are discussed.

2 | MOTIVATION

We introduced two existing methods2,3 for estimating the confidence intervals of PPV and NPV previously, and both
methods assume the test measurements are dichotomous (positive or negative) and use the properties of the binomial
distribution to construct the confidence intervals. Before applying the two existing methods to calculate the
binomial confidence intervals, for a diagnostic test with naturally continuous measurements, the value of the diagnostic
cut-off c is needed. Given the two existing methods are constructed under binomial distribution, the test results must be
binary and the cut-off point must be pre-known thus is considered as fixed. Therefore, the existing methods cannot
account for the variability of the estimated cut-off point for a naturally continuous test/biomarker. This might cause
some issues and in this research we will compare the two existing methods with our proposed methods by simulations
under continuous biomarker settings.
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Additionally, if we want to obtain the confidence intervals about both predictive values simultaneously, we typically
need to apply a multiple testing/comparison adjustment in order to maintain the nominal confidence level for both
PPV and NPV intervals together. The Bonferroni method is the most straightforward approach for multiple comparison
and it is commonly applied. However, such multiple testing adjustment is conservative as it assumes independence of
the two predictive value estimates, which is not a valid assumption as we have discussed earlier that the PPV and NPV
are potentially correlated. In order to account for such correlation, we propose to estimate the joint confidence region
of the predictive values. The proposed joint confidence region of PPV and NPV at the estimated cut-off point for a con-
tinuous biomarker defines an elliptical area around the point estimates of PPV and NPV. The elliptical region is
expected to cover the true values of the PPV and NPV simultaneously with 100(1� α)% confidence. Hence, the
corresponding simultaneous confidence intervals that are projected from the joint confidence region on either PPV and
NPV domains, would give better coverage compared with the Bonferroni approach which assumes independence
between the PPV and NPV. In order to compare the proposed with the Bonferroni-adjusted confidence intervals, addi-
tional illustrations are provided by the data example in Section 5.

In this research, we follow three steps to estimate the joint confidence region of the PPV and NPV for a candidate
continuous biomarker with the need of estimating the diagnostic cut-off. Firstly, we estimate the optimal cut-off point,
that is, ĉo, based on the Youden index criteria. Note that other cut-off selection methods such as Euclidean index, prod-
uct of sensitivity and specificity and maximum absolute determinant12,13 can be applied similarly in the proposed
framework. We chose Youden index for illustration as it is the most well-known and straightforward method.5–7 Sec-
ondly, we calculate the pre-test accuracy probabilities, that is, the sensitivity and specificity at the estimated optimal
cut-off point associated with the Youden index and then the post-test accuracy probabilities PPV and NPV are derived
using the Bayes equations. Note since sensitivity and specificity are obtained at the same estimated cut-off, and they are
correlated, so are the predictive values. Finally, we derive the individual confidence intervals as well as the joint confi-
dence region of the PPV and NPV. Note the joint confidence region can as well give the alternative confidence intervals
that simultaneously maintain the type I error when making inference about both predictive values.

This paper has two highlights: (1) the proposed inference approach of PPV and NPV is developed under a continu-
ous test setting. Generally, in the literature, the existing inference approaches of PPV and NPV are centered around
binary-scale test results such as qualitative ratings by clinical evaluations. However, for most clinical practices, it is
more common to have continuous test measurements for many screening and diagnostic tests; And our simulation
results suggest that the proposed method outperforms the existing methods for continuous test settings; (2) the pro-
posed estimation is based on the joint confidence region, which accounts for the potential correlation between PPV and
NPV. In the existing diagnostic literature, prior research proposes methods for constructing individual confidence inter-
vals, which consider PPV and NPV separately. Even after considering multiple testing adjustment, the results will be
too conservative since the correlation between predictive values are not accounted for. The proposed joint confidence
region estimation allows clinicians to observe the ranges of the post-test predictive accuracy measures simultaneously
and comprehensively, with the correlation between the predictive values in mind, and hence better decisions about the
diagnostic test can be made.

3 | METHODS

3.1 | Binormal model for ROC summary statistics

Let Y1 and Y2 denote the marker measurements for diseased and healthy subjects, respectively, and FY 1 :ð Þ and FY 2 :ð Þ
denote the corresponding cumulative distribution functions (cdfs). Note that Y1 and Y2 are independent. Henceforth,
let η = (Se, Sp)T denote the vector of true values of sensitivity (Se) and specificity (Sp), and c denotes any given/known
cut-off point. Assuming a higher marker measurement is associated with larger likelihood of having the disease, so if
an individual has a marker measurement greater than or equal to c, he/she will be classified as disease positive, and
if the marker measurement is less than c, disease negative. Sensitivity (Se) and specificity (Sp) at cut-off point (c) are

Se cð Þ¼ 1�FY 1 cð Þ andSp cð Þ¼FY 2 cð Þ:

The optimal cut-off point co determined by Youden index is estimated as follows
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co ¼ c :maxc Se cð ÞþSp cð Þ�1ð Þ¼maxc FY 2 cð Þ�FY 1 cð Þð Þf g:

By Bayes Theorem,

PPV cð Þ¼ Se cð Þ*Pd

Se cð Þ*Pdþ 1�Sp cð Þð Þ* 1�Pdð Þ ð1Þ

and

NPV cð Þ¼ Sp cð Þ* 1�Pdð Þ
1�Se cð Þð Þ*PdþSp cð Þ* 1�Pdð Þ ð2Þ

where Pd is the prevalence of disease.
From the PPV and NPV equations, we can conclude that the lower the prevalence, the higher the NPV, while the

lower the PPV. Therefore, in order to estimate the PPV and NPV, we need to obtain a value of disease prevalence from
the targeting population. Note only cohort studies can actually provide valid estimates of the prevalence of disease from
the observed data. However, for diagnostic test evaluations, especially at early stages, the case–control studies are gener-
ally used, where the disease status of the patients are known during recruiting and samples are collected separately to
form a case group from the diseased population and a control group from the non-diseased population. One major rea-
son is that oversampling of disease subjects over healthy controls is necessary in order to have enough samples from
the case group for the evaluation of the corresponding diagnostic test. This is especially true if rare disease is of interest.
For case–control diagnostic test studies, the prevalence is generally pre-specified or estimated from external sources
such as literature from past cohort studies, systematic reviews or meta analyses that pool results from multiple studies.
Henceforth, in this research, the disease prevalence is assumed to be fixed and is pre-specified for the simulation study
and data analysis.

Under binormal setting, that is, the diseased and healthy populations are both normally distributed as Y 1 �
Normal μ1,σ

2
1

� �
and Y 2 �Normal μ2,σ

2
2

� �
, sensitivity and specificity at the cut-off point c are expressed as

Se cð Þ¼Φ
μ1� c
σ1

� �
andSp cð Þ¼Φ

c�μ2
σ2

� �
, ð3Þ

where Φ(.) denotes the standard normal cumulative distribution function. The optimal cut-off point co based on the
Youden index can be obtained analytically as follows.14 When variances of diseased and healthy samples are not equal,

co ¼
μ2 b2�1
� ��aþb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þ b2�1

� �
σ22ln b2

� �q
b2�1

, ð4Þ

where a = μ1� μ2 and b¼ σ1
σ2
; when variances are equal, that is, b = 1,

co ¼ μ1þμ2
2

:

The estimates of sensitivity and specificity at the optimal cut-off point can be obtained by substituting the estimates
of μis and σ2i s (i = 1, 2) in (4) and then the estimates of the optimal cut-off in (3).

3.2 | The generalized inference approach (GPQ)

A pivot (Q), or a pivotal quantity is a random variable whose distribution does not depend on any of the distribution
parameters. That is, for a random sample Y = (Y1,Y2,…,Yn)

' from a distribution with parameter set θ, that is, Y�F(yj θ)
where y is the observed data of Y, then the pivot Q(Y, θ) has the same distribution for all values of θ. A common
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example of pivot is the t-test statistics T¼ �Y �μð Þ= S=
ffiffiffi
n

pð Þ, where �Y and S are the sample mean and standard deviation
for a random sample Y of size n generated from a normal distribution N(μ, σ2). And T does not dependent on μ nor σ2.
More details about pivots please refer to the sect. 9.2 in the “Statistical Inference” book by Casella and Berger.15

Similarly, suppose that Y�F(yjψ , ν) where ψ is the parameter of interest for estimation and ν' is a vector of nui-
sance parameters. A generalized pivotal quantity (GPQ) R(Y; Y, ψ , ν) has two properties16: (1) R(Y; Y, ψ , ν) has a distri-
bution independent of parameters; (2) The value of R(Y; Y, ψ , ν) can estimate ψ . So we can use the second property of
GPQs to estimate ψ and construct the confidence interval for ψ . The concepts of generalized confidence interval have
been successfully applied to a variety of practical settings where standard exact solutions do not exist for confidence
intervals and hypothesis testing. It has been shown that generalized inference approaches typically have good perfor-
mance, especially for small samples.17–21

The GPQ for normal variances and means are well-known19 as

Rσ2i
¼ ni�1ð Þs2i

V i
andRμi ¼�yi�Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Rσ2i

=ni

q
,

where Vi ¼ ni�1ð ÞS2i =σ2i
� �� χ2ni�1 and Zi ¼ ffiffiffiffi

ni
p �Yi�μið Þ=σi
� ��N 0,1ð Þ (i = 1, 2 for diseased and healthy groups, respec-

tively). The generalized pivots for sensitivity (RSe) and specificity (RSp) are

RSe ¼Φ
Rμ1 �Rco

Rσ1

� �
and

RSp ¼Φ
Rco �Rμ2

Rσ2

� �
,

ð5Þ

where Rco is the generalized pivot for the optimal cut-off point co. Rco can be calculated as

Rco ¼
Rμ2 R2

b�1
� ��RaþRb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
aþ R2

b�1
� �

Rσ22
ln R2

b

� �q
R2
b�1

, ð6Þ

where Ra ¼Rμ1 �Rμ2 , Rb ¼ Rσ1=Rσ2ð Þ, and Rσi ¼
ffiffiffiffiffiffiffi
Rσ2i

q
for i = 1, 2 under heterogeneity, and

Rco ¼
Rμ1 þRμ2

2

under homogeneity. Thus, RPPV and RNPV can be calculated from the estimates of sensitivity RSe and specificity RSp as
follows:

RPPV ¼ RSepd
RSepdþ 1�RSp

� �
1�pdð Þ

RNPV ¼ RSp 1�pdð Þ
1�RSp
� �

pdþRSp 1�pdð Þ
ð7Þ

where pd is the disease prevalence, which is pre-specified and assumed as a constant across all pivots.

3.2.1 | Computing Algorithm

1. Generate Vi � χ2ni�1 for calculating Rσ2i
. Generate Zi�N(0, 1) for calculating Rμi .

2. Calculate the GPQs of sensitivity and specificity Rη = (RSe,RSp)
T following (5). Calculate Rν = (RPPV,RNPV)

T follow-
ing (7).
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3. Repeat above steps for B = 2500 times to obtain Rb
ν ¼ Rb

PPV ,R
b
NPV

� �T
;b¼ 1,…,B. Note the variability of cut-off point

estimation is accounted by resampling the GPQs. Iteration number for GPQ is set at 2500 as indicated by previous
literature.8,19,22

4. Denote the 100(α/2)th and 100(1� α/2)th percentiles of Rb
PPV b¼ 1,…,Bð Þ as RPPV(α/2) and RPPV(1� α/2). Denote the

100(α/2)th and 100(1� α/2)th percentiles of Rb
NPV b¼ 1,…,Bð Þ as RNPV(α/2) and RNPV(1� α/2).

5. Calculate ν̂GPQ ¼ 1
B

PB
b¼1R

b
ν

Pn
i¼1

Xi� �Xð Þ2 and Σ̂GPQ ¼ 1
B�1

PB
b¼1 Rb

ν� ν̂GPQ
� �

Rb
ν� ν̂GPQ

� �T
. Compute the standardized ver-

sion of Rb
ν, that is, ~R

b
ν ¼ Σ̂�1=2

GPQ Rb
ν� ν̂GPQ

� �
, and its length/norm as k ~R

b
ν k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~R
b
ν

� �T
~R
b
ν

r
for b = 1, …, B. Denote the 100

(1� α)th percentile of the set k ~Rν k as q k~Rνk;1�αf g.

The 100(1� α)% generalized (referred as GPQ hereafter) confidence region of ν = (PPV,NPV)T is

ν : ν� ν̂GPQð ÞTΣ̂�1
GPQ ν� ν̂GPQð Þ≤ q2 k~Rνk;1�αf g

	 

,

where ν̂GPQ, Σ̂GPQ and q k~Rνk;1�αf g are the values obtained in step 5 of the Computing Algorithm. The area of the general-

ized confidence region is estimated by AGPQ ¼ π q2 k~Rνk;1�αf g
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j Σ̂GPQ j
q

where j Σ̂GPQ j is the determinant of Σ̂GPQ.

The corresponding simultaneous confidence intervals can be obtained as a by-product of the joint confidence region.
Such confidence interval adjusts for multiple testing and maintains the type I error rate for estimating PPV and NPV
together. With more general notations, with joint confidence region of ν = (PPV,NPV)T being

ν : ν� ν̂ð ÞTΣ̂�1
ν� ν̂ð Þ≤ q21�α

n o
where ν̂¼ ^PPV , ^NPV

� �T
and q21�α is the critical value of the confidence region

(e.g., q2 k~Rνk;1�αf g for GPQ method, etc.), the GPQ simultaneous confidence intervals for PPV and NPV can be estimated

as follows:

^PPV �q1�α

ffiffiffiffiffiffiffiffi
Σ̂1,1

q
and

^NPV �q1�α

ffiffiffiffiffiffiffiffi
Σ̂2,2

q
,

ð8Þ

where q1� α is the square-root of q21�α . Note that the simultaneous confidence interval for either PPV or NPV is the projec-
tion of the confidence ellipse of η on the corresponding axis. Another more common way to adjust for multiple testing is
the Bonferroni approach which was constructed similarly as the following individual confidence intervals, but at a type I
error rate setting at the nominal level dividing by the number of tests (=k), that is, the critical value is z1� α/2k. However,
the Bonferroni method is a well-known conservative approach, especially if the correlations between tests are large.

When only one measure, either PPV or NPV, is of interest, the individual confidence interval is more appropriate.
The 100(1� α)% individual confidence interval of PPV can be obtained based on the percentiles of the generalized
pivots as the following

RPPV α=2ð Þ, RPPV 1�α=2ð Þ,ð Þ

where RPPV(α/2) and RPPV(1� α/2) are obtained in step 4 of the Computing Algorithm. Additionally, we can apply the
standard normal quantile (z1� α/2) approach assuming RPPV being asymptotically normal, as

�RPPV � z1�α=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var RPPVð Þ

p
where �RPPV and Var(RPPV) are the sample mean and sample variance of the simulated values RPPV obtained in step 3 of
the Computing Algorithm. Similar computations can be used to calculate the confidence interval for NPV using the
GPQ method.
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3.3 | Parametric bootstrap method (PBoot)

In Section 3.2, the GPQ method obtains resamples (pivots) from simulating the GPQs for normal means and variances, sep-
arately, and then obtains the pivots for other statistics that are functions of the normal means and variances. Since
binormality is assumed, we can apply the parametric bootstrap method which resamples data directly from normal distri-
butions with parameters set to be the sample means and sample variances of the observed data. The main difference
between the GPQ method and the parametric bootstrap method is that the GPQ method resamples the pivotal estimates of
normal means and variances directly from simulating the GPQs, while the parametric bootstrap method simulates bio-
marker values from normal distributions for the diseased and non-diseased groups and then calculates the maximum likeli-
hood estimates (MLEs) of normal means and variances for the resampled data. Denote the sample means and variances asbμi and bσi2 (i = 1, 2), which are estimated from the observed biomarker measurements from the disease and healthy
groups. We can obtain the confidence intervals and region using the parametric bootstrap method as follows:

3.3.1 | Computing Algorithm

1. Generate normally-distributed bootstrap samples Yb
1 �N bμ1,bσ12� �

and Yb
2 �N bμ2, bσ22,� �

. Then obtain sample means
and variances from the generated bootstrap samples Yb

1 and Yb
2.

2. By replacing the population parameters μ and σ2 with respective sample means and variances of the bootstrap sam-
ples. Calculate bc0 following (4). Calculate bη¼ bSe,cSp� �T

following (3). Calculate bν¼ dPPV , dNPV� �T
following

(1) and (2).
3. Repeat above steps for B = 500 times to obtain bνb ¼ dPPVb

, dNPVb� �T
;b¼ 1,…,B. Note the variability of cut-off point

estimation is accounted by resampling the bootstrap samples. Bootstrap number is set at 500 as recommended by
the previous literature that boostrap number exceeding 399 gives good performance if significance of the test is set at
0.0523,24 and we set it slightly more than required to guarantee the desired performance from bootstrap.

4. Calculate bνPBoot ¼ 1=Bð ÞPB
b¼1bνb and bΣPBoot ¼ 1=B�1ð ÞPB

b¼1 bνb�bνPBoot� � bνb�bνPBoot� �T
. Compute the standardized

version of bνb , that is, ~bνb ¼ bΣ�1=2

PBoot bνb�bνPBoot� �
, and its length/norm as k ~bνb k¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~bνb� �T
~bνbr

for b = 1, …, B. Denote the

100(1� α)th percentile of the set k ~bν k as q k~bνk;1�α
� �.

Similar to GPQ, the 100(1� α)% parametric bootstrap (referred as PBoot hereafter) confidence region of
ν = (PPV,NPV)T is

ν : ν�bνPBootð ÞTbΣ�1
PBoot ν�bνPBootð Þ≤ q2

k~bνk;1�α
� �	 


,

and the corresponding area of the confidence region is π q2
k~bνk;1�α
� � ! ffiffijp bΣPBoot j. The simultaneous and individual con-

fidence intervals are obtained similarly as in Section 3.2.

3.4 | Without normality

When normality is not satisfied, it is a standard practice to use the Box-Cox transformation on the diagnostic test/bio-
marker measurements to achieve normality in both disease and non-disease groups due to the fact that the ROC curve
is invariant under monotonic transformations.

For the jth (j = 1, …, ni) subject in the ith (i = 1, 2) group with each group having ni observations, let

Y λð Þ
ij ¼

Y λ
ij�1

λ
λ �¼ 0,

log Y ij
� �

λ¼ 0

8><>:
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where it is assumed that Y λð Þ
ij �i:i:dN μi,σ

2
i

� �
. Based on the observations from healthy and diseased groups, the log-

likelihood function can be simplified as

X2
i

Xni
j

�1
2
log 2πσ2i
� �� Y λð Þ

ij �μi

� �2
2σ2i

þ λ�1ð ÞlogY ij

264
375: ð9Þ

The MLE of λ can be obtained by maximizing the above function, denoted as bλ.
For non-normal data, the Box-Cox transformation needs to be applied first to approximate normality and then the

parametric inference methods based on normality can be applied to the transformed data. For example, to apply the
PBoot method, firstly, we should Box-Cox transform the data from disease and healthy groups simultaneously to nor-
mal using the same λ values for both disease and healthy, and then obtain the sample mean and variances,bμ1BoxCox , bσ21BoxCox , from the transformed data. Finally, by achieving normality approximately, we can then follow the Com-
puting Algorithm in Sections 3.2 and 3.3 to estimate the joint confidence region as well as the individual confidence
intervals. We denote the generalized pivotal method after Box-Cox transformation as GPQT and the parametric boot-
strap method after Box-Cox transformation as PBootT.

3.5 | Monotonic transformations of PPV and NPV

Note that since PPV and NPV are values in the range [0, 1], the performance of the proposed elliptical confidence
regions, which assume the estimates are asymptotically normal, is not well maintained when the sample size is not
large enough or the values of PPV and NPV are close to the boundary. Here we adopt the idea of monotonic transfor-
mation for quantities with restrictive range, such that the transformed quantity will approximate to normality faster,
thus, the normal-based confidence intervals and regions are more precise. Common examples of monotonic transforma-
tions include the log transformation for odds ratios (OR) and the Fisher-Z transformation for correlation. For example,
the confidence interval of OR� [0, 1], is usually calculated by exponentiating the confidence interval of the slope, that
is, β1 = log(OR)� [�∞,∞]. Similarly, we can apply monotonic transformations, such as logit or arcsin-square-root
transformations,8 on probabilities (such as PPV and NPV), to improve the coverage of the confidence regions and inter-
vals. Note the transformation discussed in this section refers to the transformation on the diagnostic accuracy measure/
statistic, including the PPV and NPV, so that the transformed statistic will have an unbounded range and approximates
to normal faster. The Box-Cox transformation in Section 3.4 refers to the transformation on the biomarker measure-
ments so that the biomarker values are binormally distributed in both disease and non-disease groups.

Denote the transformation function as h(), hence transformed quantities as νh = (h(PPV), h(NPV)), and bνh and bΣh

denote the sample mean and the sample covariance matrix of νh. We apply the inverse transformation, h�1(), to obtain
the confidence region of the original values, ν = (PPV,NPV), as

ν : ν�h�1 bνh� �h iT bΣinv
� ��1

ν�h�1 bνh� �h i
≤ q21�α

	 

ð10Þ

where bΣinv ¼ JTinvbΣh
J inv is the inverse transformation of bΣh

and Jinv. The Jacobian matrix Jinv is calculated by taking the
first derivative of the inverse function h�1() evaluated at bνh . Likewise, the individual confidence intervals of PPV
(or NPV) can be obtained by inversely transforming the limits of confidence intervals (denote as lci and uci) of the
transformed quantities accordingly as [h�1(lci), h�1(uci)].

4 | SIMULATION STUDIES

Simulations were conducted under normal and gamma distributions (as an example of non-normal data) to assess the
performance of the proposed confidence regions (i.e., the generalized inference (GPQ and GPQT) and the parametric
bootstrap (PBoot and PBootT) approaches). Additionally, we also evaluated the coverage of individual confidence
intervals for PPV and NPV and compared them with the existing binomial confidence intervals. In the process of
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TABLE 1 Summary of approximate 95% joint confidence regions of GPQ method for (P1,P2) under normal distributions (based on 2000

simulations)

Sample
Estimate Coverage Width/area

Size PPV NPV PPV NPV CR PPV NPV CR

μ1,σ
2
1

� �¼ 2:3205,3:9250ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.4375,0.9643), Pd = 0.1

(20, 30) 0.4499 0.9647 0.9520 0.9565 0.9505 0.3154 0.0381 0.0112

(30, 30) 0.4477 0.9647 0.9475 0.9560 0.9495 0.2852 0.0322 0.0085

(50, 40) 0.4454 0.9646 0.9445 0.9455 0.9395 0.2364 0.0255 0.0055

(50, 50) 0.4456 0.9647 0.9550 0.9460 0.9460 0.2215 0.0247 0.0050

(55, 65) 0.4419 0.9643 0.9580 0.9535 0.9515 0.2016 0.0234 0.0043

(75, 75) 0.4406 0.9645 0.9510 0.9485 0.9465 0.1806 0.0203 0.0034

(100,100) 0.4416 0.9645 0.9475 0.9500 0.9515 0.1568 0.0175 0.0025

μ1,σ
2
1

� �¼ 2:3205,3:9250ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.8750,0.7500), Pd = 0.5

(20, 30) 0.8764 0.7560 0.9575 0.9605 0.9570 0.1467 0.2019 0.0272

(30, 30) 0.8750 0.7553 0.9570 0.9515 0.9500 0.1332 0.1719 0.0209

(50, 40) 0.8749 0.7524 0.9440 0.9515 0.9465 0.1092 0.1373 0.0136

(50, 50) 0.8752 0.7529 0.9550 0.9575 0.9575 0.1013 0.1341 0.0123

(55, 65) 0.8751 0.7516 0.9535 0.9485 0.9460 0.0916 0.1256 0.0105

(75, 75) 0.8749 0.7519 0.9455 0.9455 0.9440 0.0820 0.1096 0.0082

(100,100) 0.8748 0.7514 0.9460 0.9495 0.9520 0.0708 0.0951 0.0061

μ1,σ
2
1

� �¼ 2:3205,3:9250ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.9844,0.2500), Pd = 0.9

(20, 30) 0.9842 0.2643 0.9475 0.9540 0.9390 0.0220 0.2273 0.0040

(30, 30) 0.9843 0.2616 0.9575 0.9545 0.9545 0.0197 0.1898 0.0031

(50, 40) 0.9845 0.2590 0.9420 0.9495 0.9480 0.0158 0.1476 0.0020

(50, 50) 0.9846 0.2585 0.9490 0.9430 0.9395 0.0145 0.1432 0.0018

(55, 65) 0.9843 0.2556 0.9430 0.9450 0.9400 0.0132 0.1324 0.0015

(75, 75) 0.9843 0.2540 0.9410 0.9465 0.9455 0.0118 0.1139 0.0012

(100,100) 0.9844 0.2535 0.9440 0.9505 0.9535 0.0100 0.0981 0.0009

μ1,σ
2
1

� �¼ 1:1712,0:2547ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.2500,0.9844), Pd = 0.1

(20, 30) 0.2609 0.9840 0.9570 0.9465 0.9395 0.2000 0.0235 0.0037

(30, 30) 0.2606 0.9844 0.9610 0.9525 0.9495 0.1883 0.0196 0.0030

(50, 40) 0.2563 0.9842 0.9520 0.9510 0.9510 0.1557 0.0156 0.0021

(50, 50) 0.2557 0.9842 0.9530 0.9570 0.9480 0.1414 0.0148 0.0018

(55, 65) 0.2552 0.9842 0.9505 0.9460 0.9460 0.1257 0.0135 0.0015

(75, 75) 0.2538 0.9844 0.9560 0.9455 0.9495 0.1135 0.0117 0.0012

(100,100) 0.2529 0.9843 0.9475 0.9515 0.9475 0.0979 0.0101 0.0009

μ1,σ
2
1

� �¼ 1:1712,0:2547ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.7500,0.8750), Pd = 0.5

(20, 30) 0.7538 0.8739 0.9545 0.9500 0.9485 0.1820 0.1551 0.0255

(30, 30) 0.7570 0.8754 0.9465 0.9545 0.9490 0.1722 0.1329 0.0208

(50, 40) 0.7530 0.8758 0.9455 0.9485 0.9400 0.1462 0.1063 0.0142

(50, 50) 0.7536 0.8754 0.9490 0.9410 0.9535 0.1342 0.1011 0.0123

(55, 65) 0.7513 0.8749 0.9555 0.9580 0.9545 0.1198 0.0933 0.0102

(75, 75) 0.7524 0.8759 0.9420 0.9465 0.9455 0.1097 0.0817 0.0081

(100,100) 0.7507 0.8749 0.9545 0.9475 0.9485 0.0952 0.0708 0.0061

(Continues)
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simulations, we found that the percentile-based GPQ confidence interval is generally more robust than its z-score-based
GPQ counterpart. Thus, we report the results of the percentile-based confidence intervals. Additionally, we found that
the logit transformation (as one common example of monotonic transformation in Section 3.5) greatly improves the
coverage of the confidence regions as well as the corresponding confidence intervals. Therefore, in this section, we pre-
sent the results of confidence regions and intervals utilizing the logit-transformation for all cases.

Sample sizes (n1,n2) were set as (20, 30), (30, 30), (50, 40), (50, 50), (55, 65), (75, 75), and (100,100). The PPV and
NPV, (P1, P2), are calculated based on a set of values for sensitivity and specificity which were predetermined to be
(0.70,0.90) and (0.90,0.70) to represent cases where sensitivity and specificity are far apart, and (0.80,0.90), (0.90,0.80),
(0.85,0.95), and (0.95,0.85) to represent cases where the two quantities are closer. Prevalence rate is set at 0.1, 0.5, and
0.9 to cover a wide range of potential prevalence rates. A simulation consisting of 2000 runs was conducted under each
setting of the combinations of sensitivity and specificity pairs, prevalence rates and the sample size pairs previously
mentioned. Under 2000 simulation runs, we would expect the coverage probability of the confidence regions and inter-
vals to fall between 0.94 and 0.96. Additionally, using the same simulation settings, we tested the two existing
methods2,3 for constructing the binomial confidence intervals using simulated continuous marker measurements. The
simulation results for the two existing methods are presented in the Appendix in Tables A1-A4 as a supplementary
document.

Tables 1 and 2 present the simulation results for the calculation of joint confidence regions for (P1,P2) at the nomi-
nal level of 95% under normal assumption for the GPQ and PBoot approaches, respectively. Both GPQ and PBoot pro-
vide satisfactory coverage close to the nominal level of 0.95, regardless of sample size, prevalence, or values of
sensitivity and specificity, with PBoot being slightly worse with more liberal results (underestimated coverage). In addi-
tion, Figure 1 presents boxplots of the coverage probabilities under normal assumption for both GPQ and PBoot
methods. With regards to the average area of the confidence region, the GPQ approach showed larger confidence region
average areas than the PBoot confidence regions for all combinations of simulation settings.

Tables A1 and A2 present the simulation results for the two existing binomial confidence interval estimation
methods, denoted as Mercaldo2 and Stamey for the Bayesian version,3 respectively, under binormal distributions. If the
variability of the cut-off estimate is ignored, the binomial confidence intervals can be constructed directly from
the binary test results assuming the cut-off is fixed. Such information loss from dichotomizing a continuous variable
into binary are likely to increase the variability of the PPV and NPV estimates, thus, resulting in more conservative/
wider individual confidence intervals. For both existing methods, coverage probabilities were overestimated and uni-
formly larger than the proposed confidence intervals, and the differences are more obvious at the boundaries, when the
true PPV or NPV is high.

For the non-normal bi-gamma cases, GPQ with Box-Cox transformation (GPQT) approach performed poorly by the
simulation results. Figure 2 presents the boxplots of the coverage probabilities of GPQT and PBootT under gamma dis-
tributions. For many settings, the coverage probabilities of the joint confidence region, that were obtained by the GPQT
method, fall largely in the range of [0.86,0.89] and they are consistently lower than the nominal coverage probability of
0.95 across all settings. In addition, the GPQT-based NPV, PPV confidence intervals are slightly liberal and the coverage
probabilities centered around 0.92, which is lower than the nominal level of 0.95. In terms of average areas of the

TABLE 1 (Continued)

Sample
Estimate Coverage Width/area

Size PPV NPV PPV NPV CR PPV NPV CR

μ1,σ
2
1

� �¼ 1:1712,0:2547ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.9643,0.4375), Pd = 0.9

(20, 30) 0.9648 0.4509 0.9525 0.9435 0.9490 0.0340 0.3216 0.0102

(30, 30) 0.9646 0.4460 0.9520 0.9560 0.9470 0.0322 0.2851 0.0085

(50, 40) 0.9650 0.4471 0.9530 0.9520 0.9540 0.0271 0.2337 0.0058

(50, 50) 0.9646 0.4437 0.9590 0.9445 0.9520 0.0249 0.2214 0.0051

(55, 65) 0.9642 0.4409 0.9510 0.9460 0.9415 0.0223 0.2036 0.0042

(75, 75) 0.9647 0.4432 0.9505 0.9450 0.9390 0.0202 0.1811 0.0034

(100,100) 0.9643 0.4394 0.9525 0.9480 0.9465 0.0176 0.1567 0.0025
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TABLE 2 Summary of approximate 95% joint confidence regions of PBoot method for (P1,P2) under normal distributions (based on

2000 simulations)

Sample
Estimate Coverage Width/area

Size PPV NPV PPV NPV CR PPV NPV CR

μ1,σ
2
1

� �¼ 2:3205,1:9812ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.4375,0.9643), Pd = 0.1

(20, 30) 0.4699 0.9675 0.9525 0.9550 0.9520 0.3276 0.0407 0.0117

(30, 30) 0.4678 0.9664 0.9395 0.9440 0.9375 0.2963 0.0336 0.0089

(50, 40) 0.4592 0.9657 0.9370 0.9510 0.9435 0.2441 0.0262 0.0057

(50, 50) 0.4578 0.9658 0.9320 0.9445 0.9435 0.2275 0.0255 0.0052

(55, 65) 0.4517 0.9655 0.9375 0.9490 0.9450 0.2061 0.0240 0.0044

(75, 75) 0.4510 0.9653 0.9335 0.9515 0.9510 0.1849 0.0207 0.0034

(100,100) 0.4466 0.9650 0.9400 0.9585 0.9495 0.1593 0.0179 0.0026

μ1,σ
2
1

� �¼ 2:3205,1:9812ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.8750,0.7500), Pd = 0.5

(20, 30) 0.8844 0.7706 0.9325 0.9525 0.9495 0.2171 0.1440 0.0278

(30, 30) 0.8857 0.7655 0.9380 0.9590 0.9445 0.1807 0.1282 0.0206

(50, 40) 0.8820 0.7592 0.9435 0.9560 0.9450 0.1419 0.1067 0.0135

(50, 50) 0.8810 0.7600 0.9340 0.9510 0.9440 0.1384 0.0996 0.0123

(55, 65) 0.8795 0.7575 0.9370 0.9515 0.9530 0.1298 0.0908 0.0106

(75, 75) 0.8789 0.7563 0.9380 0.9490 0.9485 0.1124 0.0813 0.0082

(100,100) 0.8775 0.7542 0.9435 0.9475 0.9405 0.0971 0.0705 0.0061

μ1,σ
2
1

� �¼ 2:3205,1:9812ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.9844,0.2500), Pd = 0.9

(20, 30) 0.9856 0.2853 0.9330 0.9565 0.9505 0.0211 0.2579 0.0044

(30, 30) 0.9856 0.2712 0.9400 0.9595 0.9475 0.0188 0.2022 0.0031

(50, 40) 0.9852 0.2643 0.9370 0.9525 0.9455 0.0154 0.1538 0.0020

(50, 50) 0.9852 0.2633 0.9480 0.9505 0.9525 0.0142 0.1491 0.0018

(55, 65) 0.9848 0.2604 0.9455 0.9500 0.9470 0.0131 0.1381 0.0016

(75, 75) 0.9848 0.2583 0.9420 0.9500 0.9420 0.0116 0.1182 0.0012

(100,100) 0.9846 0.2563 0.9465 0.9490 0.9530 0.0101 0.1009 0.0009

μ1,σ
2
1

� �¼ 1:1712,0:5047ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.2500,0.9844), Pd = 0.1

(20, 30) 0.2771 0.9861 0.9505 0.9235 0.9310 0.2172 0.0214 0.0037

(30, 30) 0.2737 0.9855 0.9520 0.9410 0.9450 0.2044 0.0188 0.0032

(50, 40) 0.2653 0.9850 0.9495 0.9445 0.9460 0.1660 0.0152 0.0021

(50, 50) 0.2649 0.9852 0.9540 0.9425 0.9515 0.1504 0.0142 0.0018

(55, 65) 0.2621 0.9851 0.9470 0.9435 0.9460 0.1320 0.0131 0.0015

(75, 75) 0.2589 0.9849 0.9510 0.9375 0.9460 0.1184 0.0115 0.0012

(100,100) 0.2559 0.9847 0.9550 0.9485 0.9515 0.1007 0.0100 0.0009

μ1,σ
2
1

� �¼ 1:1712,0:5047ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.7500,0.8750), Pd = 0.5

(20, 30) 0.7683 0.8890 0.9555 0.9290 0.9410 0.1893 0.1459 0.0244

(30, 30) 0.7647 0.8833 0.9515 0.9380 0.9505 0.1809 0.1301 0.0210

(50, 40) 0.7601 0.8805 0.9535 0.9395 0.9510 0.1524 0.1055 0.0144

(50, 50) 0.7597 0.8808 0.9535 0.9405 0.9410 0.1385 0.0997 0.0123

(55, 65) 0.7581 0.8802 0.9515 0.9415 0.9465 0.1232 0.0919 0.0101

(75, 75) 0.7559 0.8788 0.9495 0.9455 0.9495 0.1124 0.0813 0.0082

(100,100) 0.7553 0.8781 0.9475 0.9425 0.9430 0.0972 0.0704 0.0061

(Continues)
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confidence regions, both GPQT and PBootT methods produce similar results, although the GPQTmethod tends to pro-
duce smaller areas. However, smaller area of GPQT is offset by its poorer coverage. Figure 2 demonstrates that GPQT
uniformly underperforms compared to PBootT in terms of coverage probability, hence the simulation results of GPQT
were not presented in a table and we do not recommend the GPQ method for non-normal data even after the Box-Cox
transformation.

Table 3 presents simulation results of joint confidence regions for ν = (P1, P2)
T at the nominal level of 95% under

gamma distributions using the PBootT approach. The PBootT method provides at least 92% coverage of the joint confi-
dence region, which underestimated the nominal coverage. We should apply PBootT method if Box-Cox transforma-
tion is needed to approximate normality for the observed data. Tables A3 and A4, present the simulation results under
bi-gamma distributions for the Mercaldo2 and Stamey3 methods, respectively. Similar to the simulation results
under normal distributions, both existing methods tend to be conservative and overestimate the coverage for the indi-
vidual confidence intervals.

TABLE 2 (Continued)

Sample
Estimate Coverage Width/area

Size PPV NPV PPV NPV CR PPV NPV CR

μ1,σ
2
1

� �¼ 1:1712,0:5047ð Þ, μ2,σ
2
2

� �¼ 0,1ð Þ, (P1,P2) = (0.9643,0.4375), Pd = 0.9

(20, 30) 0.9668 0.4831 0.9595 0.9270 0.9410 0.0352 0.3391 0.0107

(30, 30) 0.9667 0.4703 0.9525 0.9325 0.9435 0.0335 0.2964 0.0089

(50, 40) 0.9660 0.4580 0.9530 0.9520 0.9555 0.0282 0.2398 0.0060

(50, 50) 0.9657 0.4563 0.9525 0.9440 0.9530 0.0256 0.2273 0.0052

(55, 65) 0.9652 0.4519 0.9595 0.9480 0.9505 0.0228 0.2092 0.0043

(75, 75) 0.9652 0.4513 0.9580 0.9360 0.9495 0.0207 0.1848 0.0034

(100,100) 0.9651 0.4489 0.9540 0.9475 0.9515 0.0179 0.1598 0.0026

(A) (B)

FIGURE 1 Boxplots of 95% confidence regions for PPV-NPV joint region, NPV, and PPV under bi-normal distributions for GPQ and

PBoot methods
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5 | DATA EXAMPLE

Alzheimer's disease (AD) is a specific type of dementia characterized by loss of memory and other cognitive abilities
that are important for performing daily activities. Mild cognitive impairment (MCI) due to AD, is a quickly progressing
form of dementia caused by, typically undiagnosed, AD. While there is no cure for cognitively impaired (AD or MCI)
patients, ascertaining an early diagnosis is crucial for developing treatment plans to slow down disease progression and
for establishing legal and financial arrangements prior to further cognitive decline. The ADNI25 is a push to advance
AD research through the discovery and development of AD biomarkers. The data used in this example contains 114 cog-
nitively healthy controls and 301 cognitively impaired (AD or MCI due to AD) cases.

Figure 3 presents the Q-Q plots of two common biomarkers used for MCI and AD diagnosis, the intracranial cere-
brospinal fluid volume (ICV) and total Tau (TAU). ICV is normally distributed for both cognitively healthy and cogni-
tively impaired groups, while TAU is not. Thus, we use ICV to illustrate the GPQ confidence region under normality
and TAU to illustrate PBootT without normality. For both situations, logit transformations of PPV and NPV were
applied and the resulting confidence region and intervals were inversely transformed to obtain those of the original
PPV and NPV probabilities.

The prevalence of cognitively impaired disease (AD or MCI) cannot be estimated from the ADNI data. In addition,
prevalence varies widely depending on demographics, especially age and education.26 Prior research27 concluded the
prevalence estimates of MCI ranges from 5% to 36.7%. A more recent summary of Alzheimer's disease suggested that
approximately 15% to 20% of people age 65 or older have MCI and among individuals with MCI who were tracked for
5 years or longer, an average of 38 percent developed AD.28 In our analysis, since we combined MCI and AD as one dis-
ease group, we need to estimate the prevalence of the combined group for participants of age 54.4 and older. Suppose
MCI prevalence is 5%–20% for subjects aged 54.4 and older, the prevalence of AD is then calculated by multiplying MCI
prevalence by 0.38, which is around 2%–8%, therefore, the total prevalence of (MCI + AD) is 7%–28%.

Therefore, in order to obtain more valid confidence interval and region estimations, three analyses were conducted
for varying prevalence estimates of 10%, 20%, and 30% for this ADNI population of participants aged 54.4 years and
older. In addition, for comparison purposes, the individual confidence intervals for PPV and NPV were adjusted for
multiple testing using the Bonferroni method (i.e., the confidence level is set at 100(1� α/2)%). Figures 4–6 present the
elliptical confidence regions of PPV and NPV using the GPQ method for biomarker ICV and the PBootT methods for

(A) (B)

FIGURE 2 Boxplots of 95% confidence regions for PPV-NPV joint region, NPV, and PPV under bi-gamma distributions for GPQT and

PBootT methods. Note: the scale for the y-axis (coverage) in (A) is different from (B) as GPQT has a lot lower coverage for the joint CR
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TABLE 3 Summary of approximate 95% joint confidence regions of PBootT method for (P1, P2) under gamma distributions (based on

2000 simulations)

Sample
Estimate Coverage Width/area

Size PPV NPV PPV NPV CR PPV NPV CR

(α1, β) = (2.4741, 0.1850), (α2, β) = (5, 1), (P1,P2) = (0.4375,0.9643), Pd = 0.1

(20, 30) 0.4768 0.9701 0.9515 0.9330 0.9350 0.3926 0.0425 0.0158

(30, 30) 0.4712 0.9688 0.9395 0.9315 0.9220 0.3505 0.0347 0.0116

(50, 40) 0.4599 0.9673 0.9400 0.9425 0.9330 0.2862 0.0267 0.0073

(50, 50) 0.4521 0.9670 0.9270 0.9360 0.9240 0.2686 0.0261 0.0066

(55, 65) 0.4506 0.9669 0.9335 0.9300 0.9220 0.2468 0.0243 0.0056

(75, 75) 0.4453 0.9664 0.9500 0.9420 0.9330 0.2187 0.0210 0.0043

(100,100) 044359 0.9660 0.9445 0.9365 0.9370 0.1899 0.0180 0.0032

(α1, β) = (2.4741, 0.1850), (α2, β) = (5, 1), (P1,P2) = (0.8750,0.7500), Pd = 0.5

(20, 30) 0.8826 0.7852 0.9465 0.9275 0.9265 0.1782 0.2288 0.0385

(30, 30) 0.8824 0.7768 0.9380 0.9355 0.9355 0.1565 0.1905 0.0283

(50, 40) 0.8786 0.7669 0.9380 0.9435 0.9350 0.1286 0.1469 0.0177

(50, 50) 0.8772 0.7648 0.9375 0.9415 0.9310 0.1216 0.1433 0.0165

(55, 65) 0.8769 0.7640 0.9465 0.9560 0.9435 0.1115 0.1335 0.0140

(75, 75) 0.8761 0.7624 0.9400 0.9445 0.9335 0.0985 0.1151 0.0107

(100,100) 0.8752 0.7597 0.9475 0.9400 0.9300 0.0857 0.0989 0.0079

(α1, β) = (2.4741, 0.1850), (α2, β) = (5, 1), (P1,P2) = (0.9844,0.2500), Pd = 0.9

(20, 30) 0.9855 0.3051 0.9470 0.9290 0.9310 0.0267 0.2944 0.0068

(30, 30) 0.9851 0.2857 0.9465 0.9450 0.9385 0.0236 0.2276 0.0047

(50, 40) 0.9848 0.2745 0.9305 0.9325 0.9235 0.0188 0.1673 0.0028

(50, 50) 0.9847 0.2727 0.9480 0.9305 0.9285 0.7663 0.1609 0.0026

(55, 65) 0.9847 0.2708 0.9455 0.9390 0.9295 0.0161 0.1484 0.0022

(75, 75) 0.9845 0.2659 0.9365 0.9395 0.9340 0.0142 0.1254 0.0016

(100,100) 0.9845 0.2628 0.9395 0.9345 0.9355 0.0123 0.1061 0.0012

(α1, β) = (26.0183, 3.3500), (α2, β) = (5, 1), (P1,P2) = (0.2500,0.9844), Pd = 0.1

(20, 30) 0.2872 0.9867 0.9350 0.9125 0.9230 0.2335 0.0245 0.0048

(30, 30) 0.2871 0.9862 0.9425 0.9190 0.9130 0.2217 0.0224 0.0043

(50, 40) 0.2757 0.9854 0.9445 0.9350 0.9315 0.1779 0.0184 0.0029

(50, 50) 0.2717 0.9855 0.9395 0.9310 0.9255 0.1572 0.0170 0.0024

(55, 65) 0.2676 0.9853 0.9360 0.9225 0.9160 0.1371 0.0154 0.0019

(75, 75) 0.2628 0.9851 0.9495 0.9400 0.9315 0.1216 0.0137 0.0015

(100,100) 0.2606 0.9849 0.9450 0.9350 0.9315 0.1038 0.0119 0.0011

(α1, β) = (26.0183, 3.3500), (α2, β) = (5, 1), (P1,P2) = (0.7500,0.8750), Pd = 0.5

(20, 30) 0.7790 0.8947 0.9445 0.9250 0.9225 0.1951 0.1640 0.0297

(30, 30) 0.7756 0.8895 0.9370 0.9290 0.9275 0.1857 0.1512 0.0262

(50, 40) 0.7673 0.8827 0.9365 0.9490 0.9260 0.1553 0.1272 0.0187

(50, 50) 0.7669 0.8849 0.9360 0.9355 0.9275 0.1400 0.1176 0.0154

(55, 65) 0.7625 0.8829 0.9445 0.9275 0.9295 0.1245 0.1069 0.0125

(75, 75) 0.7619 0.8816 0.9460 0.9380 0.9315 0.1137 0.0958 0.0103

(100,100) 0.7585 0.8800 0.9415 0.9355 0.9360 0.0977 0.0831 0.0077

(α1, β) = (26.0183, 3.3500), (α2, β) = (5, 1), (P1,P2) = (0.9643,0.4375), Pd = 0.9
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biomarker TAU, along with the corresponding Bonferroni corrected rectangular regions, under pre-specified prevalence
of 10%, 20%, and 30%, respectively. Additionally, results for the individual confidence intervals using the two existing
methods2,3 are provided and the results are adjusted for multiple testing using the Bonferroni method similarly. From
Figures 4-6, we can easily see that the coverage area of the rectangular confidence region estimated using the
Bonferroni method (rectangular) is much larger than the elliptical area obtained by the proposed confidence region,
regardless of the method used for constructing the individual confidence intervals. Therefore, the Bonferroni method
would produce confidence regions to be too conservative as compared to the proposed confidence region which con-
siders the correlation between the two predictive values as well as simultaneously maintain the type I error for both. In
addition, among all rectangular regions, we observe the two existing confidence intervals based on the binomial distri-
bution give larger areas than the proposed confidence intervals derived for a continuous biomarker. Furthermore, we
observed that the elliptical regions are tilted and the differences in the lengths of two axis are relatively large indicating
there is a strong correlation between PPV and NPV estimates, and thus the proposed elliptical joint confidence region is
preferred.

TABLE 3 (Continued)

Sample
Estimate Coverage Width/area

Size PPV NPV PPV NPV CR PPV NPV CR

(20, 30) 0.9688 0.5018 0.9525 0.9215 0.9195 0.0357 0.3890 0.0133

(30, 30) 0.9688 0.4883 0.9450 0.9280 0.9280 0.0336 0.3556 0.0113

(50, 40) 0.9673 0.4700 0.9390 0.9370 0.9295 0.0283 0.2905 0.0078

(50, 50) 0.9671 0.4668 0.9495 0.9390 0.9340 0.0255 0.2720 0.0066

(55, 65) 0.9664 0.4623 0.9420 0.9400 0.9240 0.0227 0.2472 0.0053

(75, 75) 0.9663 0.4587 0.9355 0.9360 0.9330 0.0206 0.2207 0.0043

(100,100) 0.9657 0.4524 0.9510 0.9435 0.9360 0.0179 0.1912 0.0032

(A) (B)

FIGURE 3 Q-Q plots of (A) marker ICV and (B) marker TAU. Values of marker ICV for both cognitively healthy and cognitively

impaired groups are normally distributed, while values of marker TAU are not
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(A) (B)

FIGURE 4 95% Joint confidence regions of PPV (P1) andNPV (P2) based on the proposedGPQ andPBootTmethods for (A) biomarker ICV and

(B) biomarker TAU. Three rectangular regions formed by joining the respective confidence intervals with Bonferroni correction for PPV andNPVwere

plotted. The confidence intervals are calculated based on (1) the proposed individualGPQ (for ICV) andPBootT (for TAU) confidence intervals (C.I.);

(2)MercaldoC.I.s; (3) StameyC.I.s. The limits of the C.I.s as well as the area of the confidence regionswere given in Table 4. The estimates of P1 and P2
were determined using an estimate of 10% for disease prevalence. TheGPQ confidence region in (A) is given by the elliptical equation ((x� 0.1271)2/

0.28872)+ ((y� 0.9166)2/0.15512)= 1withmajor axis being in the direction of vector ±(�1,�0.6001)T andwith point (0.1271,0.9166) as the origin. The

PBootT confidence region in (B) is inversely transformed and given by the elliptical equation ((x� 0.3329)2/0.33412)+ ((y� 0.9442)2/0.11122)with

major axis being in the direction of vector ±(�1,�0.3936)T andwith point (0.3329,0.9442) as the origin

(A) (B)

FIGURE 5 95% Joint confidence regions of PPV (P1) and NPV (P2) based on the proposed GPQ and PBootTmethods for (A) biomarker ICV

and (B) biomarker TAU. Three rectangular regions formed by joining the respective confidence intervals with Bonferroni correction for PPV and

NPV were plotted. The confidence intervals are calculated based on (1) the proposed individual GPQ (for ICV) and PBootT (for TAU) confidence

intervals (C.I.); (2) Mercaldo C.I.s; (3) Stamey C.I.s. The limits of the C.I.s as well as the area of the confidence regions were given in Table 5. The

estimates of P1 and P2 were determined using an estimate of 20% for disease prevalence. The GPQ confidence region in (A) is given by the elliptical

equation ((x� 0.2467)2/0.29632) + ((y� 0.8302)2/0.15922)= 1 with major axis being in the direction of vector ±(�1,�0.6529)T and with point

(0.2467,0.8302) as the origin. The PBootT confidence region in (B) is inversely transformed and given by the elliptical equation ((x� 0.5276)2/

0.33782)+ ((y� 0.8827)2/0.11602) with major axis being in the direction of vector ±(�1,�0.4059)T and with point (0.5276,0.8827) as the origin
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TABLE 4 Summary of

simultaneous confidence region and

interval estimations about PPV (P1) and

NPV (P2) using a prevalence estimate

of 10%

CR Method ICV TAU

Area Elliptical 0.0012 0.0014

Rectangular 0.0016 0.0020

RectangularMercaldo 0.0021 0.0027

RectangularStamey 0.0020 0.0027

CI Point.Est CI Point.Est CI

PPV 95% Simul. CI 0.1271 (0.1009,0.1588) 0.3329 (0.2672,0.4058)

95% Bonfer. CI 0.1271 (0.1024,0.1566) 0.3329 (0.2717,0.4003)

95% Bonfer. CIMercaldo 0.1144 (0.0872,0.1486) 0.2077 (0.1526,0.2760)

95% Bonfer. CIStamey 0.1139 (0.0893,0.1493) 0.2048 (0.1551.0.2767)

NPV 95% Simul. CI 0.9166 (0.9001,0.9306) 0.9442 (0.9352,0.9521)

95% Bonfer. CI 0.9166 (0.9012,0.9298) 0.9442 (0.9359,0.9515)

95% Bonfer. CIMercaldo 0.9093 (0.8910,0.9247) 0.9437 (0.9320,0.9535)

95% Bonfer. CIStamey 0.9090 (0.8908,0.9238) 0.9434 (0.9314,0.9532)

Note: Area: Area of the confidence regions (CR). Elliptical: The elliptical joint confidence regions estimated by
GPQmethod for marker ICV and PBootTmethod for marker TAU, respectively. Rectangular: The rectangular

confidence regions formed by two Bonferroni-corrected individual confidence intervals of PPV and NPV estimated
by GPQmethod for marker ICV and PBootTmethod for marker TAU, respectively. Rectangular-Mercaldo: The
rectangular confidence regions formed by two Bonferroni-corrected individual confidence intervals of PPV and
NPV estimated by Mercaldo's method for both markers ICV and TAU (with Box-Cox transformation), respectively.

Rectangular-Stamey: The rectangular confidence regions formed by two Bonferroni-corrected individual
confidence intervals of PPV and NPV estimated by Stamey's method for both markers ICV and TAU (with Box-
Cox transformation), respectively. Simul. CI: Simultaneous confidence intervals (CI) derived from the elliptical
joint confidence regions. Bonfer. CI: Bonferroni-corrected simultaneous confidence intervals.

(A) (B)

FIGURE 6 95% joint confidence regions of PPV (P1) and NPV (P2) based on the proposed GPQ and PBootTmethods for (A) biomarker ICV

and (B) biomarker TAU. Three rectangular regions formed by joining the respective confidence intervals with Bonferroni correction for PPV and

NPV were plotted. The confidence intervals are calculated based on (1) the proposed individual GPQ (for ICV) and PBootT (for TAU) confidence

intervals (C.I.); (2) Mercaldo C.I.s; (3) Stamey C.I.s. The limits of the C.I.s as well as the area of the confidence regions were given in Table 6. The

estimates of P1 and P2 were determined using an estimate of 30% for disease prevalence. The GPQ confidence region in (A) is given by the elliptical

equation ((x� 0.3585)2/0.28332)+ ((y� 0.7396)2/0.15502)= 1 with major axis being in the direction of vector ±(�1,�0.6127)T and with point

(0.3585,0.7396) as the origin. The PBootT confidence region in (B) is inversely transformed and given by the elliptical equation ((x� 0.6564)2/

0.34372)+ ((y� 0.8140)2/0.11592) with major axis being in the direction of vector ±(�1,�0.4150)T and with point (0.6564,0.8140) as the origin
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Full results of the analysis of ICV and TAU can be found in Tables 4–6 for prevalence estimates of 10%, 20%, and
30%, respectively. These include point estimates and 95% confidence intervals (both the simultaneous interval derived
from the elliptical region and the Bonferroni corrected interval) for PPV and NPV, as well as the areas of respective con-
fidence regions. Additionally, results for the Bonferroni-adjusted rectangular regions using Mercaldo's2 and Stamey's3

methods are also presented. The areas in the rectangular confidence regions, regardless of the method used, are larger
than those produced using the elliptical method.

TABLE 6 Summary of

simultaneous confidence region and

interval estimations about PPV (P1) and

NPV (P2) using a prevalence estimate

of 30%

CR Method ICV TAU

Area Elliptical 0.0061 0.0043

Rectangular 0.0081 0.0062

RectangularMercaldo 0.0108 0.0114

RectangularStamey 0.0109 0.0115

CI Point.Est CI Point.Est CI

PPV 95% Simul. CI 0.3585 (0.3023,0.4190) 0.6564 (0.5809,0.7247)

95% Bonfer. CI 0.3585 (0.3049,0.4160) 0.6564 (0.5877,0.7191)

95% Bonfer. CIMercaldo 0.3325 (0.2693,0.4023) 0.5027 (0.4100,0.5952)

95% Bonfer. CIStamey 0.3315 (0.2717,0.4044) 0.4983 (0.4169,0.6030)

NPV 95% Simul. CI 0.7396 (0.6996,0.7760) 0.8140 (0.7870,0.8384)

95% Bonfer. CI 0.7396 (0.7017,0.7743) 0.8140 (0.7894,0.8364)

95% Bonfer. CIMercaldo 0.7221 (0.6795,0.7609) 0.8131 (0.7805,0.8418)

95% Bonfer. CIStamey 0.7215 (0.6760,0.7582) 0.8119 (0.7794,0.8414)

Note: Area: Area of the confidence regions. Elliptical: The elliptical joint confidence regions estimated by

GPQ method for marker ICV and PBootT method for marker TAU, respectively. Rectangular: The
rectangular confidence regions formed by two Bonferroni-corrected simultaneous confidence intervals of
PPV and NPV. Simul. CI: Simultaneous confidence intervals derived from the elliptical joint confidence
regions. Bonfer. CI: Bonferroni-corrected simultaneous confidence intervals.

TABLE 5 Summary of

simultaneous confidence region and

interval estimations about PPV (P1) and

NPV (P2) using a prevalence estimate

of 20%

CR Method ICV TAU

Area Elliptical 0.0039 0.0032

Rectangular 0.0049 0.0045

RectangularMercaldo 0.0064 0.0073

RectangularStamey 0.0065 0.0072

CI Point.Est CI Point.Est CI

PPV 95% Simul. CI 0.2467 (0.2011,0.2987) 0.5276 (0.4488,0.6050)

95% Bonfer. CI 0.2467 (0.2043,0.2946) 0.5276 (0.4558,0.5983)

95% Bonfer. CIMercaldo 0.2251 (0.1769,0.2819) 0.3709 (0.2884,0.4617)

95% Bonfer. CIStamey 0.2244 (0.1782,0.2833) 0.3668 (0.2952,0.4707)

NPV 95% Simul. CI 0.8302 (0.7985,0.8577) 0.8827 (0.8644,0.8989)

95% Bonfer. CI 0.8302 (0.8010,0.8558) 0.8827 (0.8661,0.8975)

95% Bonfer. CIMercaldo 0.8166 (0.7842,0.8451) 0.8817 (0.8591,0.9012)

95% Bonfer. CIStamey 0.8162 (0.7811,0.8432) 0.8810 (0.8597,0.9009)

Note: Area: Area of the confidence regions. Elliptical: The elliptical joint confidence regions estimated by
GPQ method for marker ICV and PBootT method for marker TAU, respectively. Rectangular: The
rectangular confidence regions formed by two Bonferroni-corrected simultaneous confidence intervals of
PPV and NPV. Simul. CI: Simultaneous confidence intervals derived from the elliptical joint confidence

regions. Bonfer. CI: Bonferroni-corrected individual confidence intervals.

18 SCHAIBLE AND YIN



6 | CONCLUSIONS AND DISCUSSIONS

PPVs and NPVs at the optimal cut-off point associated with the Youden index are important measures for evaluating a
biomarker's diagnostic accuracy and, additionally, they are post-test accuracy measures (i.e., conditioning on the test
results), which is more intuitive and practical. The joint inference of PPV and NPV offers a comprehensive view of the
diagnostic potential of a biomarker. The proposed elliptical joint confidence region maintains the type I error rate when
evaluating a biomarker through both PPV and NPV under test positive and negative, respectively. In the meantime, it
takes into account the correlation between PPV and NPV, something that has not been previously addressed. Further-
more, past research of PPV and NPV has focused on binary tests. To apply those methods for a continuous test, dichoto-
mizing at a pre-specified cut-off is needed, however, the variability of the cut-off estimate is not accounted for. The
proposed methods are framed for continuous biomarker/test measurements so the estimation variability of the cut-off
is considered, which leads to superior performance compared to the existing methods as seen in the simulations.

As the simulation results indicate, all methods using the logit-transformed probabilities perform better than the
same method without the logit transformation. The GPQ method performs quite well under normality, and slightly out-
performs the PBoot method, with closer coverage probabilities to the nominal level and smaller areas (thus more pre-
cise). However, under non-normal conditions, the parametric bootstrap method with Box-Cox transformation (PbootT)
markedly outperforms the generalized inference approach under Box-Cox transformation (GPQT). Thus, GPQT
approach is not recommended for non-normal data, while the PBoot and PBootT methods can be utilized under nor-
mal and non-normal conditions respectively. To further improve the performance of the proposed confidence region
under non-normal situations, future research can use non-parametric methods such as the empirical estimate8 or the
kernel smoothed version9 of the sensitivity and specificity to plug into the Bayes equations for estimating the PPV and
NPV quantities while using the non-parametric bootstrap methods for the variance estimation. Moreover, the proposed
confidence intervals outperform the two existing confidence interval estimation methods uniformly for the continuous
test if the estimation of the diagnostic cut-off is needed. Finally, the data example provides evidence that the proposed
elliptical joint confidence region produces smaller areas compared to the rectangular, Bonferroni-adjusted region, and
is thus, more preferred.

For different types of disease diagnosis, sensitivity and specificity may possess different degrees of importance. For
example, a diagnostic or screening test of high sensitivity may be more preferred if the disease has high mortality and a
cure is available, such as tests for the early detection of cervical cancer in-situ, for which a simple laser surgery would
treat effectively. In other cases, the consequence of having a false positive is very serious (e.g., a false diagnosis of leuke-
mia resulting in strong doses of chemotherapy with severe side-effects, large amount of medical expenditures and a
heavy psychological burden), then a diagnostic test of high specificity is required. The Youden index criterion for the
cut-off selection weighs the sensitivity and specificity equally important and, thus, may not be practical for some set-
tings. In such settings, it is recommended to use the weighted Youden index,29 which is a sum of weighted sensitivity
and specificity that multiplies different weight coefficients to address varying degrees of importance.

Furthermore, in this research, we assume prevalence is fixed and the pre-test diagnostic accuracy probabilities (sen-
sitivity and specificity) depend merely on the choice of the cut-off and the proposed method accounted for the variabil-
ity of estimating the unknown cut-off. In practice, various factors can influence the performance of a diagnostic test,
resulting in different values of sensitivity and specificity, such as the testing location, the clinicians, the patient charac-
teristics. Additionally, different patient characteristics may lead to different disease prevalence. To deal with various
sources of confounding, the regression analysis can be applied to account for the variability of pre-test accuracy mea-
sures as well as the prevalence due to confounding for estimating the confidence region and intervals of the post-test
accuracy probabilities—the PPV and NPV.

In addition to evaluating diagnostic accuracy, the joint inference methods for the PPV and NPV could be applied to
novel trial design topics, most notably studies utilizing enrichment and/or adaptive designs. Adaptive trials use infor-
mation obtained throughout a clinical trial to adapt aspects of the study design such as patient enrollment, treatment
allocation, and sample size planning. For the purpose of patient selection in enrichment studies, first, a predictive logis-
tic regression model using the screening data as predictors is developed to predict patient response to treatment. The
condition for enrichment analysis would be responders versus non-responders, which is comparable to test positive ver-
sus negative for a diagnostic test evaluation. Then the question of interest would be, “What's the probability that a sub-
ject responds at the end of the study given their predicted probability of responding to treatment based on the screening
data?” Enrichment studies are especially popular in the Alzheimer's Disease (AD) therapeutic area where well-known
AD biomarkers, such as cerebrospinal fluid, can be used to predict an individual's probability of responding to
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treatment, prior to enrollment.30,31 This allows sponsors to enrich their studies with subjects who are more likely to
respond positively to study treatments. The post-test probabilities of response to treatment could be summarized using
the proposed joint confidence region method in order to make more informed decisions regarding enrollment criteria,
which may significantly reduce sample size, increase power, and generally increase the chances of detecting a statisti-
cally significant treatment effect.32 Note that although large prevalence rates are less common for disease diagnosis, in
broader applications, such as enrichment designs, the “prevalence” is the treatment response rate in the general popula-
tion, which can be of large probability values. In the simulation, we have settings at Pd = 0.9 to demonstrate the perfor-
mance under broader applications.

An R program containing functions for the proposed methods is included in the supplementary document.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

DATA AVAILABILITY STATEMENT
The data used in Section 5 are openly available on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu).

ORCID
Jingjing Yin https://orcid.org/0000-0003-4843-613X

REFERENCES
1. Zhou X-H, McClish DK, Obuchowski NA. Statistical Methods in Diagnostic Medicine. Vol 569. Hoboken, New Jersey, USA: Wiley-Inter-

science; 2009.
2. Mercaldo ND, Lau KF, Zhou XH. Confidence intervals for predictive values with an emphasis to case–control studies. Stat Med. 2007;26

(10):2170-2183.
3. Stamey JD, Holt MM. Bayesian interval estimation for predictive values from case-control studies. Commun Stat Simul Comput. 2009;39

(1):101-110.
4. Youden W. Index for rating diagnostic tests. Cancer. 1950;3(1):32-35.
5. Verniquet A, Kakel R. How accurate is pulse pressure variation as a predictor of fluid responsiveness? Anesthesiology. 2012;116(3):740.
6. Gnjidic D, Hilmer SN, Blyth FM, et al. Polypharmacy cutoff and outcomes: five or more medicines were used to identify community-

dwelling older men at risk of different adverse outcomes. J Clin Epidemiol. 2012;65(9):989-995.
7. Pan H-C, Jenq C-C, Tsai M-H, et al. Risk models and scoring systems for predicting the prognosis in critically ill cirrhotic patients with

acute kidney injury: a prospective validation study. PLoS One. 2012;7(12):e51094.
8. Yin J, Tian L. Joint confidence region estimation for area under roc curve and youden index. Stat Med. 2014;33(6):985-1000.
9. Yin J, Tian L. Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index. Comput Stat

Data Anal. 2014;77:1-13.
10. Adimari G, Chiogna M. Simple nonparametric confidence regions for the evaluation of continuous-scale diagnostic tests. Int J Biostat.

2010;6(1):1557-4679.
11. Bantis LE, Nakas CT, Reiser B. Construction of confidence regions in the roc space after the estimation of the optimal youden index-

based cut-off point. Biometrics. 2014;70(1):212-223.
12. Hajian-Tilaki K. The choice of methods in determining the optimal cut-off value for quantitative diagnostic test evaluation. Stat Methods

Med Res. 2018;27(8):2374-2383.
13. Hua J, Tian L. A comprehensive and comparative review of optimal cut-points selection methods for diseases with multiple ordinal

stages. J Biopharm Stat. 2019;30(1):46-68.
14. Schisterman EF, Perkins N. Confidence intervals for the youden index and corresponding optimal cut-point. Commun Stat Simul Com-

put. 2007;36(3):549-563.
15. Casella G, Berger RL. Statistical Inference. Vol 2. Pacific Grove, CA: Cengage Learning; 2002.
16. Weerahandi S. Generalized confidence intervals. J Am Stat Assoc. 1993;88(423):899-905.
17. Weerahandi S. Anova under unequal error variances. Biometrics. 1995;51(2):589-599.
18. Weerahandi S, Berger VW. Exact inference for growth curves with intraclass correlation structure. Biometrics. 1999;55(3):921-924.
19. Krishnamoorthy K, Lu Y. Inferences on the common mean of several normal populations based on the generalized variable method. Bio-

metrics. 2003;59(2):237-247.
20. Tian L, Cappelleri JC. A new approach for interval estimation and hypothesis testing of a certain intraclass correlation coefficient: the

generalized variable method. Stat Med. 2004;23(13):2125-2135.
21. Lin S, Lee JC, Wang R. Generalized inferences on the common mean vector of several multivariate normal populations. J Stat Plan Infer.

2007;137(7):2240-2249.

20 SCHAIBLE AND YIN

http://adni.loni.usc.edu
https://orcid.org/0000-0003-4843-613X
https://orcid.org/0000-0003-4843-613X


22. Tian L. Confidence intervals for p(y1 > y2) with normal outcomes in linear models. Stat Med. 2008;27(21):4221-4237.
23. Davidson R, MacKinnon JG. Bootstrap tests: how many bootstraps? Econ Rev. 2000;19(1):55-68.
24. Wilcox RR. Fundamentals of Modern Statistical Methods: Substantially Improving Power and Accuracy. New York, NY, USA: Springer;

2010.
25. Mueller SG, Weiner MW, Thal LJ, et al. The alzheimer's disease neuroimaging initiative. Neuroimaging Clin. 2005;15(4):869-877.
26. Roberts R, Knopman DS. Classification and epidemiology of mci. Clin Geriatr Med. 2013;29(4):753-772.
27. Sachdev PS, Lipnicki DM, Kochan NA, et al. The prevalence of mild cognitive impairment in diverse geographical and ethnocultural

regions: the cosmic collaboration. PLoS One. 2015;10(11):e0142388.
28. A. Association et al. 2018 alzheimer's disease facts and figures. Alzheimers Dement. 2018;14(3):367-429.
29. Rücker G, Schumacher M. Summary roc curve based on a weighted youden index for selecting an optimal cutpoint in meta-analysis of

diagnostic accuracy. Stat Med. 2010;29(30):3069-3078.
30. Ballard C et al. Enrichment factors for clinical trials in mild-to-moderate alzheimer's disease. Alzheimer's Dement Transl Res Clin Inter-

ventions. 2019;5:164-174.
31. Wolz R et al. Enrichment of clinical trials in mci due to ad using markers of amyloid and neurodegeneration. Neurology. 2016;87(12):

1235-1241.
32. Holland D, McEvoy LK, Desikan RS, Dale AM, Initiative ADN, et al. Enrichment and stratification for predementia alzheimer disease

clinical trials. PLoS One. 2012;7(10):e47739.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Schaible BJ, Yin J. Joint confidence region estimation on predictive values.
Pharmaceutical Statistics. 2021;1–21. https://doi.org/10.1002/pst.2131

SCHAIBLE AND YIN 21

https://doi.org/10.1002/pst.2131

	Joint confidence region estimation on predictive values
	1  INTRODUCTION
	2  MOTIVATION
	3  METHODS
	3.1  Binormal model for ROC summary statistics
	3.2  The generalized inference approach (GPQ)
	3.2.1  Computing Algorithm

	3.3  Parametric bootstrap method (PBoot)
	3.3.1  Computing Algorithm

	3.4  Without normality
	3.5  Monotonic transformations of PPV and NPV

	4  SIMULATION STUDIES
	5  DATA EXAMPLE
	6  CONCLUSIONS AND DISCUSSIONS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


